262 research outputs found

    Interference between postural control and mental task performance in patients with vestibular disorder and healthy controls

    No full text
    OBJECTIVES - To determine whether interference between postural control and mental task performance in patients with balance system impairment and healthy subjects is due to general capacity limitations, motor control interference, competition for spatial processing resources, or a combination of these.METHOD - Postural stability was assessed in 48 patients with vestibular disorder and 24 healthy controls while they were standing with eyes closed on (a) a stable and (b) a moving platform. Mental task performance was measured by accuracy and reaction time on mental tasks, comprising high and low load, spatial and non-spatial tasks. Interference between balancing and performing mental tasks was assessed by comparing baseline (single task) levels of sway and mental task performance with levels while concurrently balancing and carrying out mental tasks.RESULTS - As the balancing task increased in difficulty, reaction times on both low load mental tasks grew progressively longer and accuracy on both high load tasks declined in patients and controls. Postural sway was essentially unaffected by mental activity in patients and controls.CONCLUSIONS - It is unlikely that dual task interference between balancing and mental activity is due to competition for spatial processing resources, as levels of interference were similar in patients with vestibular disorder and healthy controls, and were also similar for spatial and non-spatial tasks. Moreover, the finding that accuracy declined on the high load tasks when balancing cannot be attributed to motor control interference, as no motor control processing is involved in maintaining accuracy of responses. Therefore, interference between mental activity and postural control can be attributed principally to general capacity limitations, and is hence proportional to the attentional demands of both tasks

    Interference between postural control and mental task performance in patients with vestibular disorder and healthy controls

    Get PDF
    Objectives: To determine whether interference between postural control and mental task performance in patients with balance system impairment and healthy subjects is due to general capacity limitations, motor control interference, competition for spatial processing resources, or a combination of these. Method: Postural stability was assessed in 48 patients with vestibular disorder and 24 healthy controls while they were standing with eyes closed on (a) a stable and (b) a moving platform. Mental task performance was measured by accuracy and reaction time on mental tasks, comprising high and low load, spatial and non-spatial tasks. Interference between balancing and performing mental tasks was assessed by comparing baseline (single task) levels of sway and mental task performance with levels while concurrently balancing and carrying out mental tasks. Results: As the balancing task increased in difficulty, reaction times on both low load mental tasks grew progressively longer and accuracy on both high load tasks declined in patients and controls. Postural sway was essentially unaffected by mental activity in patients and controls. Conclusions: It is unlikely that dual task interference between balancing and mental activity is due to competition for spatial processing resources, as levels of interference were similar in patients with vestibular disorder and healthy controls, and were also similar for spatial and nonspatial tasks. Moreover, the finding that accuracy declined on the high load tasks when balancing cannot be attributed to motor control interference, as no motor control processing is involved in maintaining accuracy of responses. Therefore, interference between mental activity and postural control can be attributed principally to general capacity limitations, and is hence proportional to the attentional demands of both tasks

    Labyrinthine involvement in Behcet's syndrome

    Get PDF
    We report the neuro-otological findings in 26 consecutive patients with definite and probable Behcet's syndrome unselected for audiovestibular complaints. Auditory and/or vestibular abnormalities were found in 19 (73 per cent) patients, with auditory involvement in 14 (54 per cent) and vestibular in 10 (38.5 per cent) of patients. Peripheral involvement was more common than central involvement for both auditory and vestibular lesions. Bilateral cochlear hearing impairment was the most common audiological finding, whereas unilateral peripheral dysfunction was the prevailing vestibular abnormality. No correlation has been found between audiovestibular lesions and other organ lesions, disease duration or age or sex of the patients. Moreover, there was a lack of interdependence between cochlear and vestibular labyrinthine lesions. We conclude that a full neuro-otological assessment in patients under investigation for Behcet's syndrome may reveal labyrinth involvement in a substantial proportion of patients. In view of the absence of a specific diagnostic test for Behcet's syndrome, audiovestibular lesions may provide further diagnostic support for this disorder

    The effect of virtual reality on visual vertigo symptoms in patients with peripheral vestibular dysfunction: a pilot study

    Get PDF
    Individuals with vestibular dysfunction may experience visual vertigo (VV), in which symptoms are provoked or exacerbated by excessive or disorientating visual stimuli (e.g. supermarkets). VV can significantly improve when customized vestibular rehabilitation exercises are combined with exposure to optokinetic stimuli. Virtual reality (VR), which immerses patients in realistic, visually challenging environments, has also been suggested as an adjunct to VR to improve VV symptoms. This pilot study compared the responses of sixteen patients with unilateral peripheral vestibular disorder randomly allocated to a VR regime incorporating exposure to a static (Group S) or dynamic (Group D) VR environment. Participants practiced vestibular exercises, twice weekly for four weeks, inside a static (Group S) or dynamic (Group D) virtual crowded square environment, presented in an immersive projection theatre (IPT), and received a vestibular exercise program to practice on days not attending clinic. A third Group D1 completed both the static and dynamic VR training. Treatment response was assessed with the Dynamic Gait Index and questionnaires concerning symptom triggers and psychological state. At final assessment, significant betweengroup differences were noted between Groups D (p = 0.001) and D1 (p = 0.03) compared to Group S for VV symptoms with the former two showing a significant 59.2% and 25.8% improvement respectively compared to 1.6% for the latter. Depression scores improved only for Group S (p = 0.01) while a trend towards significance was noted for Group D regarding anxiety scores (p = 0.07). Conclusion: Exposure to dynamic VR environments should be considered as a useful adjunct to vestibular rehabilitation programs for patients with peripheral vestibular disorders and VV symptoms

    Diagnostic accuracy and usability of the EMBalance decision support system for vestibular disorders in primary care: proof of concept randomised controlled study results

    Get PDF
    BACKGROUND: Dizziness and imbalance are common symptoms that are often inadequately diagnosed or managed, due to a lack of dedicated specialists. Decision Support Systems (DSS) may support first-line physicians to diagnose and manage these patients based on personalised data. AIM: To examine the diagnostic accuracy and application of the EMBalance DSS for diagnosis and management of common vestibular disorders in primary care. METHODS: Patients with persistent dizziness were recruited from primary care in Germany, Greece, Belgium and the UK and randomised to primary care clinicians assessing the patients with (+ DSS) versus assessment without (- DSS) the EMBalance DSS. Subsequently, specialists in neuro-otology/audiovestibular medicine performed clinical evaluation of each patient in a blinded way to provide the "gold standard" against which the + DSS, - DSS and the DSS as a standalone tool (i.e. without the final decision made by the clinician) were validated. RESULTS: One hundred ninety-four participants (age range 25-85, mean = 57.7, SD = 16.7 years) were assigned to the + DSS (N = 100) and to the - DSS group (N = 94). The diagnosis suggested by the + DSS primary care physician agreed with the expert diagnosis in 54%, compared to 41.5% of cases in the - DSS group (odds ratio 1.35). Similar positive trends were observed for management and further referral in the + DSS vs. the - DSS group. The standalone DSS had better diagnostic and management accuracy than the + DSS group. CONCLUSION: There were trends for improved vestibular diagnosis and management when using the EMBalance DSS. The tool requires further development to improve its diagnostic accuracy, but holds promise for timely and effective diagnosis and management of dizzy patients in primary care. TRIAL REGISTRATION NUMBER: NCT02704819 (clinicaltrials.gov)
    corecore